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S U M M A R Y  
Self-similar solutions for the flow between a piston and the strong shock propagating non-uniformly into an ideal 
gas at rest obeying the power law density distribution are investigated. The conditions for the existency of the solutions 
are derived. Numerical solutions are obtained. 

1. Introduction 

Numerical solutions for the similarity flows of an ideal gas driven out by spherical piston 
expanding with uniform velocity were first investigated, independently, by Sedov [1] and 
Taylor [2]. This problem is extended by Krasheninikova [3] to the case when the piston 
expands non-uniformly with a velocity U given by 

u =  Uot" (n>- l ) ,  (1) 
where Uo is a constant. The solutions of this problem are analogous to that of the solutions of 
hypersonic flow past the power law bodies obtained by Lees and Kubota [4] who have shown 
that the condition for the existency of the solution is - v / ( v + 2 ) <  n< 0 where v=1,2,3 for 
plane, cylindrical and spherical flows respectively. The same condition is also derived by 
Grigorin [5]. In all these works the gas ahead of the shock is assumed to be uniform and at rest. 
Recently Helliwell [6] studied the piston problem, in which the piston velocity is assumed to 
be of the form (1) and the density of a gas ahead of the shock is satisfying the law 

p l =  -w (w >O), (2) 
where A is a constant. This problem has been considered as a particular case of a radiative 
piston problem in which there exists, by dimensional considerations, a relation between n and 
w, namely, n = - w/(w + 5). It appears that this relation is taken for granted in the case of non- 
radiative piston problem also and the whole analysis is based upon this relation. 

In this paper we consider the self-similar piston problem in which the piston velocity is 
givefi by (1). The shock is assumed to be strong and propagating in a medium at rest in which 
the density obeys equation (2). This problem with spherical symmetry has got importance in 
astrophysics (See Parker [7]). We first note that there are only two independent dimensional 
constants Uo and A involved in the problem and so the self-similarity exists (See Sedov [8]). 
Also there can not be in general any explicit relation between n and w as given by Helliwell. 
On the other hand it is shown that for all physically meaningful flows the ranges for n and w are 

- ( v - w ) / ( V  + 2 - w ) <  n<  - w ( 7 - 1 ) / [ w ( 7 - 1 ) + 2 ]  and 0 <  w<  v/l ' ,  

where 7 is the ratio of specific heats. These conditions on n ensure the finiteness of density and 
pressure drag on the piston surface. Also it is shown that when n=  - w ( 7 - 1 ) / [ w ( 7 - 1 ) + 2 ] ,  
the flow becomes homentropic. The problem with ? = 7_s, n -- - w/(w +5) considered by Helliwell 
[6] corresponds to homentropic flow. Numerical solutions for v=3,  7=~  and w= 1.5 are 
given using the Adams-Moulton method. 
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2. Basic  Equat ions  

The equation of motion, continuity and energy for one-dimensional unsteady flow of a perfect 
gas can be written in the form (see Sedov [8]) 

p '  p 
2 ( V - 3 ) V ' + 2 ~ -  + V ( V - 1 ) - ( w - 2 ) ~  = 0,  (3) 

2 V'+ (V-5) + ( v - w ) V = O ,  (4) 

2 ( V - 3 )  i f -  7 - 2 + [ w ( 7 - 1 ) + 2 ] V = 0  (5) 

by the following transformation 

r A A P(2) (6) 
v =-t v()~), p = RO0, p - -  rW_2t 2 , 

2 =  ~oo)rt  , 3 :  l +n. (7) 

The similaritv variable ). is taken in the form (7) by considering Uo and A as the basic dimensional 
constants involved in the problem and it takes the values R and 1 at the piston surface and 
behind the shock respectively. The rest of the symbols have got their usual meaning. 

From the equations (3)-(5) one can obtain 

R dV V ( V - 1 ) ( V - 6 ) + ( K - v V ) z  
= z - ( v - a )  2 ' (8) 

dz z { [ Z ( V - 1 ) + v ( 7 - 1 ) V ] ( V - 5 ) 2 - ( 7 - 1 ) V ( V - 1 ) ( V - 3 ) - z [ 2 ( V - 1 ) + K ( 3 , - I ) ] }  
d V -  ( V - 5 ) [ V ( V - 1 ) ( V - 3 ) + ( K - v V ) z ]  , (9) 
where 

P 
z = 7 ~ ,  7K = (w-2)3 +2 �9 

The strong shock conditions are given by 

V(1) - 23 R(1) - 7 +1 P(1) - 232 
7 +1 ' 7 - 1  ' 1' +1 ' 

and the kinematic condition on the piston gives 

= 3 .  

The region of interest in V-z plane is 

(lO) 

27(7-  1)62 
z(1) - (7 +1) 2 (11) 

(12) 

25 
z > 0 ,  z - ( V - a )  2 > 0 ,  - - _ <  V< 6. (13) 

1' + 1  - -- 

3. Condi t ions  for Ex i s tence  o f  So lut ions  

The total energy of the flow between piston surface and the shock front can be written, using 
(6) and (7), as 

( U . o ~  v + 2 w 1 
E=Aev ~ /  ta(v+2-w)-2fi[1RV2 + 3 P~]2v+l-wd)~ (14) 
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where ev = 2 ~- ~ 7z }(~- ~){4-~). For  the flows driven out  by the piston, the energy always increases 
with time. This is possible only if 

n > -  + 2 - w  ' w < v .  (15) 

The  second condi t ion of(15) is required to m a k e  sure that  for all physically meaningful  solutions 
must  lie between zero and  one. These condi t ions ensure tha t  the pressure  drag  on the pis ton 

is finite. Fur the r  it is necessary that  dV/d2 < 0 in the doma in  of interest. So it follows f rom (8), 
(10) and (13) that  a physically meaningful  solutions does not  exist if K - v 6  > 0 i.e., 

2 
6 _< . (16) 

- v ?  + 2 -  w 

F r o m  the equat ions  (4) and (5) one can get the following integral  

z = CR {tv(~- 1)+ 2j~- 2)/(v - w)o ( V -  6) {tw(~- 1)+ 21~- 2)/(~- w)a 2 - 2/~, (17) 

where C is a cons tant  of  integrat ion to be de termined f rom the condi t ions  (11). F r o m  this 
integral it is clear that  R ~ ( V - 6 )  m as 2 ~ 2 ,  where 

2 -  [ w ( 7 - 1 )  +2 ]  6 
m = (7 v + 2 _ w ) 6 _ 2  (18) 

Thus  it follows f rom (i6) and (18) that  the density at the pis ton surface is finite if 

2 2 
< 3 <  (19) 

v ? + 2 - w  -- w ( 7 -  1 )+2  ' 

For  all gases (with 7 > 1) the ranges for n and  w can be ob ta ined  f rom (15) and  (19) as 

(v - w) w (1 ' -  1) v 
v + 2 - - w  < n < w ( ~ , - 1 ) + 2  0 < w  < 7 (20) 

~ ~0.2:3077 

Figure 1. Velocity distribution. 
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These are the conditions on n and w for the existency of physically meaningful solutions. The 
conditions for existency of the solutions derived by Lees and Kubota [4] follow from (20) 
when w = 0. When n attains the maximum value i.e., n = - w ( 7 -  1) / [w(7-  1)+ 2] the density on 
the piston attains a constant value and the flow is homentropic. Incidently, we note that the 
case 7 = ~  and n = - w / ( w  +5), considered by Helliwell, corresponds to the homentropic flow 
problem. 

J 

. - o . z ' 1  

o.eo o.~o ~/T s ~ I.O 

Figure 2. Density distribution. 
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Figure 3. Pressure distribution. 
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4. Solutions 

Once the equation (9) is solved for z in terms of V then V(2), R (2) and P (2) can be found from 
the equations (8), (4) and (17) respectively. Analytical solutions of (9), a nonlinear equation of 
Poincar6's type, seem to be not obtainable with conditions (20). But a qualitative description 
of the integral curves in V-z plane can be given by finding out the singularities of(9) and their 
nature. Here we note that some of the singularities of (9), for example V-- K/v, z = o% depend 
upon v, 7, w and n while Helliwell's work shows that they are independent ofw. The reason for 
this lies in the relation n = - w/(w +5) taken by Helliwell. But for clear understanding of the 
field variables describing the flow between the piston and the shock it is easy to integrate 
numerically the equations (3), (4) and (5) starting with the known values at the shock given by 
(11) and continuing until the value 2 is reached such that V()~)=6. Since the case v=3  is of 
physical importance, we have given the numerical solutions for 7--7, w -- 1.5 for different values 
of n in Figs. (1), (2) and (3). Here the suffix s denotes the values behind the shock front and 
2 = r/rs. The expressions v/vs, p/p~ and p/p~ can be calculated from V, R and P respectively with 
the help of (6) and (11). For example v/v~= (7 +1)2V/26. Homentropic flow corresponds to 
n = -0.23077. The computation was carried out on the CDC-3600. The method used is the 
Adams-Moutlon method using Runga-Kutta starter and partial Double Precision Arithmetic. 

In conclusion we wish to thank the referee for his comments. 
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